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A model for the classical Kepler problem is presented in which both the temporal 
evolution and the symmetry group act globally in a simple and canonical way. These actions 
are generated by the Hamiltonian function, the angular momentum and the Runge-Lenz 
vector. The symmetry group is SO(4) for negative and SO(1, 3), for positive energy. 

Introduction 

Until recently, the discussion of the inner symmetry of the classical Kepler problem 

has been restricted to the infinitesimal aspect. That is, one has discussed the additional 

constant of motion, the so-called Rmge-Lenz vector whose components, together with 

those of the angular momentum, in the case of negative energy, form the Lie algebra’ 

of the orthogonal group SO(4) under the Poisson bracket. While in the quantum mechani- 

cal Kepler problem the global SO(4) symmetry has been explored in 1935/36 by Fock [6] 

and Bargmann [4] (for a more recent review see Bander, Itzykson [3]), the integral curves 

of the vector fields generated by the Runge-Lenz vector on the classical phase space 

were not investigated until recently. Bacry, Ruegg, and Souriau [2] in 1966 were the first, 

as far as we know, to give an explicit solution of the differential equations for the one- 

parameter transformation groups generated by the Runge-Lenz vector. In somewhat 

more detail these were discussed by Rogers [lo] and, independently, by Ligon [8]. Roughly 

speaking, in these papers the S0(4)-action on the phase space is induced from some 

distorted action on a 3-sphere. With other applications in mind, Moser [9] has “regular- 

ized” the Kepler problem, that is, he has enlarged the phase space in such a way that 

the temporal evolution generates a global time flow, a situation which is otherwise pre- 

cluded by the existence of collision orbits. The aim of our paper is to transform the Kepler 

problem in such a way that both the time flow and the SO(4) symmetry are globally re 

alized in a simple and canonical way. This is also done for positive energy and the 

group SO(l, 3)e. We have succeeded in unifying the viewpoints of regularization of the 

phase space and of an undistorted action of the symmetry group. We will comment on the 

case of vanishing energy briefly and not discuss it in detail. 
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After completion of our paper, we have received a copy of a talk by Souriau [ll] 

in which basically the same results are derived, but by somewhat different methods. 

1. Preparatory remarks 

The configuration space of the Kepler problem is Q := R3\,{0}, that is, a three- 

dimensional real Euclidean vector space with the origin, the so-called collision point, 

removed. We think of this space as a C”-manifold and define the C” coordinate functions 

Qi: Q + R by means of Gi(x1, ~2, x3) : = Xi, i = 1, 2, 3. The phase space of the Kepler 

problem is then the total space r*Q of the cotangent bundle zz: r*Q + Q on the con- 

figuration space (cf. Abraham-Marsden [l], Godbillon [7]). Let ~IPI denote the ring 

of real-valued P-functions on a Cm-manifold M. We will consider the following elements 

of 9T*Q: 

1. The coordinate Junctions qi, pi: T*Q -+ R, i = 1,2, 3, which are defined by 
3 

4i(Yl : = 4i o n:(Y) and y = : c pi(y)dQilnG(y) for y E T*Q. We will consider the qi, 
i=l 

i = 1, 2, 3, as components of an R3-valued function, which we will write in the form 

S= (ql, q2, q3). We will do the same for other three component functions. We will 

often use the Euclidean scalar product in R3, which we will denote with a dot, e.g. j. 4 

IciZ, i i. ’ p q For the norm, we will simply write q : = 141 = (if. ij)1/2, etc. 

2. The Hamilton function of the Kepler problem: 

H :=m;!!_.!, a > 0, m > 0. 
4 

3. The components of angular momentum: 

I: zz +xjj, 
(?XI;)i := 2 &ijkqjpky i= 1,2,3, (1.2) 

j.k= I 

(1.1) 

where Eijk is the Levi-Civita symbol, that is, 6ijk is totally antisymmetric and &rz3 = 1. 

4. The components of the Runge-Lenz vector: 

The canonical symplectic form on the phase space is 

3 

o = YdqiAdpi. 

(1.3) 

(1.4) 
i=l 

The Hamiltonian vector field X, belonging to a function f E PT*Q is defined by 

df = : w(Xf, . ). (1.5) 
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Then we have 

(l-6) 

where E. is the unit vector field in the coordinate direction given by the index. Then the 

Poisson bracket { . , * }: %T*Q x %T*Q -+ %T*Q has the form 

(1.7) 

f, g E %T*Q. %T*Q, considered as a real vector space, has, with the Poisson bracket, 

the structure of a Lie algebra. For the above-mentioned functions, one can calculate the 

following Poisson brackets 

(I) {q. 
I, 

H} = -!!T = pi- 
r7Pi F?l ’ 

{Pi, H} = -;; = _..\.qi, i = 1,2,3, 
I 4 

(II) {Li,H}=O, {Ri,H}=O, i=1,2,3, 

([IL) {&, Lj} = 2 EijkLk, {Li, Rj} = 2 &ijkRk, 
k=l k=l 

(1.8) 

(Ri, Rj) = -2~H~ FijkLk, i,,j = 1,2,3. 
k=1 

We will now comment on each of these groups of equations. 

1. The Hamilton function H generates the temporal evolution of the system. The 

first group of equations in (1.8) is thus identical with the usual Hamiltonian equations 

of motion of the Kepler problem. The solutions of these equations are the coordinate 

functions of the integral curves of the vector field A’, belonging to H. Since we have 

removed the collision point 0 from the configuration space, and since the collision orbits 

with angular momentum z = 0 go into this point for finite times, the vector field X, 

is not complete. Thus, time does not act on the phase space as a one parameter group 

of global diffeomorphisms. This handicap can be overcome by embedding the phase 

space in a larger manifold, on which time does act as a global group of transformations. 

This so-called regularizatioti of the Kepler problem was carried out by Moser [9] for the 

surfaces of constant negative energy in phase space. It is practically a matter of com- 

pensating the divergence of the potential -a/q at q = 0 by i; values in a sphere with 

infinite radius. The mapping of the phase space which we will describe also yields 

a regularization of the Kepler problem in which the surfaces of constant negative 

energy are of the same topological type as those of Moser [9]. 

2. Group (II) of equations in (1.8) shows that the functions Li and Rip i = 1,2, 3, 

are constant along the orbits of H. The orbits of H thus lie in the inverse image of a value 
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3 

of these functions. Because of the condition c LiR; = 0, which holds on the whole 
i=l 

phase space, at most five of these constants of motion are independent. The surfaces of 

a constant value of the functions Li and Ri, i = 1, 2, 3, are thus at least one-dimensional. 

One can show that they are exactly one-dimensional and, in fact, the orbits of H can 

immediately be given, explicitly, with the help of the constants of motion. The orbit 

belonging to the values li, Yi, of Li, Ri, i = 1, 2, 3, is: (4’ E r*Ql 40,). 1-i 0, G(y). I’ 

= 12 - cmq(p), j(y) . r= 0, 5(y) * 7 = - rxm/(f'q(~~))~(y) . (ix 7)). The first two con- 

ditions are the equations for the Keplerian planetary orbits in configuration space. 

3. For the discussion of group (III) of equations in (1.8) we introduce a notation 

for the constant energy hypersurfaces in phase space: 

ZE : = {y E PQl H(y) = ~5-1. (1.9) 

Since the l-form dH has no zeroes on I”*Q, a general theorem (cf. DieudonnC [5], 9; 16.8.9, 

p. 42) tells us that the energy surfaces are closed submanifolds of T*Q. We also introduce 

the following open submanifolds of T*Q: 

17 d* : =1 :,_j ZE. (1.10) 

EZO 

Thus T*Q = 2‘_uz’,uz’+, and one can consider J’, as the common boundary of Z:, 

and Z_. On Xc, instead of Li and Ri, we introduce: 

Lf := Lilz’,, K~ := (2/~?HF)-“‘Ril~~, F = *, i = 1,2,3. (1.11) 

Obviously, L4;, & E FZE:,. Since H commutes with Li and Ki, WC have the following 

Poisson brackets on Zc,: 

k=l 

k=l 

(1.12) 

Under the Poisson bracket; the functions I~: and KY generate the Lie algebras of the groups 

SO(4) and SO(I, 3)0 on Xc for 8 = - and F = +, respectively. 

4. Since H = 0 on Zo, the functions Li and Ri in group (111) of equations (1.8) seem 

to generate the Lie algebra of the Euclidean space group TSO(3). However, that is not 

the case since, for the Hamiltonian vector fields belonging to the functions Ri, the follow- 

ing holds: 

IxRi’ xR,l = -X(Ri.Rj: = -A. ?,,,” i p,,l,, 
~ 2/11 )’ F;jrLkX~, 

k=L k+ 

for H -+ 0. But X,, # 0 on X0. 
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2. The negative energy case 

On Z_ , we consider the following eight real-valued functions: 

6 0 = (-2mH)“2 i. jjsinpl+ “’ 1 ~0s~ __- 
ma ( 1 ma , 

i$= 
‘+ <.i;_ 

( 
q--map sing?+ 

1 

(-2mHY2 qpcosP 
mcr 9 

7pJ = -g.jcosp,+ 
(-2r&‘iz ( 1’ 

-- , 

II = - ,_2yg1,2 
(+z&j;sp:q;;:,, 

(2.1) 

cp := (-2mH)"2/(ma)+*j. 

In this section, we pretend that the functions qi, pi and H are only defined on ,Z_, 

in order to avoid the technically correct but cumbersome notation of restricted functions 

qijZ_, pill_ and HIZ_ . The functions (2.1) are obviously of the class C”. We now con- 

sider the six-dimensional C”-submanifold of R4 x R4 which is defined by 

M- := ((~,T~)ER~xR~~ l2 = 1, 5.~ = 0, q2 > 0}, 

whereby we denote the Euclidean scalar product in R4 by 

(2.2) 

and the square of the Euclidean norm in R4 by E2 = F * 6. M_ is obviously diffeomorphic 

to the total space (T*S3)X of the cotangent bundle on the 3-sphere S3, from which the 

zero section has been removed. Since T*S3 is trivial, M_ is also diffeomorphic to S3 x 

x (R3\ (0)). If one considers the functions defined in (2.1) as one R4 x R4-valued map- 

ping of ZL, it is easily verified that the image of this mapping lies in M_ . The absence 

of the zero section corresponds to the condition 

7’ = -ma2/(2H) > 0. 

We define two C”-submanifolds of M_ by 

(2.3) 

N, := ((E,~)EM_I&, = 11, N_ := M_\N,. (2.4) 

N, can be identified with the punctured cotangent space at the “north pole” of the 3- 

sphere and is thus diffeomorphic to R3\{0). N_ is open and dense in M_. 

THEOREM 1. The functions dejirted in (2.1) map Z- di’eomorphically onto N_. 

Proof: We have already mentioned that (2.1) yields a P-mapping :F from Z_ into 

M.- . We will show that the image of F does not intersect N, . Because of 5 * 7 = 0, q. 
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would have to be zero on N,. According to 32.1), the equations E,, = 1 and q0 = 0 are 

identical with plsinp,+(l+2qH/cl)cosg, = 1 and rpcosg,-(1+2qH/cc)sinp, = 0. If we 

multiply the first equation by sinv, the second by cosrp and add, we get ~1 = sinp; and 

thus 9 = 0. The first equation then yields qH = 0, which cannot be true on Z_. 

In order to show that F: Z- + N- is a diffeomorphism, we construct a P-mapping 

G: N_ --f Z._ for which G 0 F = id,_ and PO G = id,_ hold. To this end, we first show 

that the equation 

y = losiny- ($-1/2~0cosy (2.5) 

defines a C”-function y: N- + R, for which [y(E, r)j < 1 holds on all of N_. We only 

have to prove that, for every (5, r]) EN-, there exists one and only one y such that - 1 

< y < 1 and y solves (2.5). Then it follows immediately from the implicit function theorem 

that this solution y is a C” function of (E, q). We write (2.5) in the form 

y = (5; + r13r2)“2cos(Y - Y) 3 (2.6) 

with a suitable phase y. The graphs of f(y) = y and g(y) = (E~+$/~2)“2~os(y-~) 

have exactly one intersection since (E$+$j/r ) 2 ‘I2 < 1, which follows from (2.2) with 

5g+rg/r2 < [Z+$/q2 + (Fx?~)~/v~ = 1. Using (2.6), Iy(t, r)l < 1 clearly holds. We 

now map N- into R3 x R3 by means of 

4 = -ik [(to - cos y) ($-1/2?j- (($-112q0 -sin y)?], 

ma[(r2)-‘&jsin y+ gcos y] p = _ .z .iii ----~~~~~-2172~.~ ) 
(17 > [I-bosy-(rl I- v0slnyl 

(2.7) 

y = tosin y- (~2)-1~2~0cosy, 

whereby y is the C” function on N_ defined by the last equation. The denominator of 

the equation for I; cannot become zero. Otherwise, one would have 

tocosy+ (y12)-“2?j,,siny = I and 50siny-(~2)-1~Z~ocosy = y. 

Squaring and adding would give ti +qg/q2 = 1 + y2 < 1, and thus y = 0. According 
to (2.4), we have to < 1 on N_. Moreover, we have 

and 
q2 = (~2/(ma))2(l-~50cos~/r-(~2)-‘~2~osiny)2 > 0 

H = p2/(2m)- cc/q = - ri1u2/(2q2) < 0. 

Thus, if we identify _Z with its image under the coordinate mapping in R3 X R3, (2.7) 

describes a C” mapping G: N_ -+ Z_ . The proof of the relations G 0 F = id,_ and 

F 0 G = idN_ follows by an elementary calculation. m 
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Thus, Z_ is embedded diffeomorphically in M- by means of (2.1). The complement 

of the image N- of X- in M_ is N,. Now, according to (2.3), the Hamilton function 

H can be extended to a C” function defined on all of M- . On the other hand, according 

to (2.7), 4 would go to zero on N,, while p would diverge there in such a way that H 

= p2/2m- a/q would remain finite. Thus N, corresponds to a family of two-dimensional 

spheres of infinite momenta, parametrized by the positive quantity (q’)“’ or, equivalently, 

by the values of the negative energy -H. In the following, we will show that the addition 

of N, to the actual phase space N- regularizes the Kepler problem in the sense of Moser 

[9], that is, that the vector field of H, extended to all of M_ , is complete and thus generates 

a global one-parameter group of transformations on M_, which describes the dynamics 

of the Kepler problem, In addition, we will show that the SO(4) Lie algebra of Hamilton- 

ian vector fields, which is generated by the functions L;, K;, i = 1, 2, 3, on Z_ , can 

be extended to all of M_, is complete there, and thus generates a global Hamiltonian 

action of the symmetry group SO(4) on the regularized phase space. 

First, we will study the transferral of the symplectic structure under the mapping F: 

Z_ + M-. We will use g,, $, a = 0, I, 2, 3, to denote the coordinate functions on 

R4 x R4 which are defined by 

EZ(E,~) = 62, r&P 1;1) = %. 

The restriction of these functions to M_ will be denoted by 

& := &,IM_, ijDl := TjiJM-. 

If j: M- + R4 x R4 denotes the identical embedding, then we have ia = j*&$ = Cm 0 j, 

4.. = j*i;iol = y= 0 j. On R4 x R4, we define a symplectic structure by means of the closed 

2-form 

3 

-6 := 

c 
d& A d?j=. 

cz=o 

The pullback & : = j*O of this 2-form to M_ under j is a closed, non-degenerate 2-form 

on M- . Thus (M- , ii) is a symplectic manifold. Since j* is a homomorphism of the 

algebra of alternating forms which commutes with the exterior derivation, we have 

(2.8) 

If, instead of the restriction o/E_ of the canonical symplectic form o on the phase space 

T*Q, we simply write u, according to the agreement at the beginning of this chapter for 

the coordinates qi,pi, then (Z_ , co) is a symplectic manifold. 

THEOREM 2. o = F*(&;IN_), that is, F is a sympIectomorphism from (z-, w) onto 
(N-,&/N_). 
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Proof: Since N- is an open submanifold of M_ , (N_ , GIN_) is a symplectic manifold. 

According to Theorem 1, the functions E,, ?ja on z’_ and &IN_ , &IN._ on N_ , a = 0, 1, 

2, 3, are related by the equations 5, = F*(i=IN_), Q, = F*&lN_). Thus, for the l-forms 

defined on L’_ and M_ by 

3 3 

1' a- .- =j$,dv. = E.drj, 11 := 
c 

i,d& = &cl?j, (2.9) 
a=0 a=0 

we have 

F*(GIN_) = F*&N_ * d$JN_) = F*(iN_). F*(d$N_) 

= 5. d(F*($IN_)) = 5. dq = Y. 

In order to calculate Y, we write (2.1) in the form 

E = asing,+bcosv, 7 = v(-acosrp+bsinrp), 

g.pJv 
a := 

[ 
q/4_G.pjj/(ma) 

1 
’ v := mal(-2mH)‘/2, 

b := [qg+‘], F := 4.p/e3. 

(2.10) 

Because of a2 = 1 = b2, a ’ b = 0, we have a. da = 0 = b . db, a. db-t- b ’ du = 0, and 

thus Y = 5*dq = v(dpl+a.db) = $.dj+d(Tj.j). Thus we have 

3 

Cl) = 
c 

dqi Adpi = dv = d(F”(GIN_)) = F”d(GIN_) = F*(dv^lN_) = F*(&IN_). w 
i=l 

On the ground of this theorem, we can consider F as a symplectic embedding of 

(Z-, co) into the symplectic manifold (M_ , h). 

We now describe global actions of the groups SO(4) and R := (R, +) on the mani- 

fold M- . We will see that the action of R can be interpreted as the temporal evolution 

and the action of SO(4) as the global symmetry of the Kepler problem. To see this, we 

will calculate the vector fields on M_ belonging to the infinitesimal transformations of 

these actions and show that they are Hamiltonian, and that the restrictions of the cor- 

responding Hamilton functions to the submanifold N_ are mapped, by means of the 

pullback F*. onto the constants of motion L;, K; and the Hamiltonian function of the 

Kepler problem which were given in the first chapter. 

We define an action CT: S0(4)xM_ -+ M_ of the group SO(4) on M- by means 

of o(R, (E, v)) := (RE, Ry), whereby 5 H RE denotes the canonical action of SO(4) 

on R4. We let R operate on M_ by t: Rx M- -+ M-, z(t, (5,~)) := (~cow,~~+ 

+r($)-%inco,t, ?Icoso,t-_(y2)"'sino,~t), ~9~~ : = ma2(q2)-3/2. 

THEOREM 3. (V4), u) and CR, > z are Lie transformation groups of M-. . The orbits 
of so(4) under CT are the 5-dimerrsiorral submanifolds MI_ characterized by (q2)l12 = r, 
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PER; = {xERI x > O}. The actions (r atzd t commute. Alzy ofbit in M_ qf R under t 

is completely corttained irt a submanifold MI:. 

Proqf: The first assertion holds because: (1) the mappings (T: SO(4) xM_ -+ M_ 

and t: Rx M_ --f M-, considered as mappings of manifolds, are of class C”, and (2) 

the transformation group axioms o(R’, o(R, . )) = a(R’R, . ) and x(t’, z(t, . )) = t(t’+ 

+ t, * ) hold. The first property may be proven using charts, which we shall not do here. 

The second property follows by an elementary calculation. 

Since R is an orthogonal transformation, we have (Ry)’ = q2. Thus every submanifold 

Mi. is invariant under G. In order to prove that SO(4) acts transitively on Mi. under cr, 

we show that any point (5,~) E MI_ can be transformed to the point ($, $) = ((1 , 0, 0, 0), 
(0, 0, 0, r)) by an element of SO(4). Since SO(4) acts transitively on the 3-sphere S3, 

there is an R, E SO(4) such that RI5 = [ The stability subgroup of SO(4) in the point 

i is formed by the elements of the form 

0 1 0 
R= oi 

[ 1 
with i E SO(3). 

Since 7. 5 = R,E. RI7 = i* Rlq = 0, RI7 has the form (0, Ij,) with ?$ = r2, that 

is, ij, lies on the 2-sphere S,” of radius r. Since SO(3) acts transitively on every such 2- 

sphere, we can choose an x2 E SO(3) that transforms ;Lj, into k,f, = (0, 0, r) = +. But 

then we have q(&R1, (l, q)) = (g, {>. 
The last two assertions follow from an elementary calculation. n 

Clearly, one can identify the manifold Mr with the sphere-bundle (T*S3), on the 

3-sphere S3, whose fibers are the 2-spheres S,? of radius r in the cotangent planes. M_ 

can then be thought of as the union IJ MI. of all orbits of SO(4) under G. 
r>o 

The Lie algebra of SO(4) is formed by the antisymmetric, real 4 x 4 matrices. The 

following matrices form a basis of it: 

A,=[;;; _$ AZ-[; _; ;,;I, 

(2.11) 
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They obey the following commutation relations: 

[Ai, Aj] = 2 eijkAk, LAi, Bj] = 2 EijkBk, 

k=l k=l 

[Bi, Bj] = 2 &ijkAk. 

k=l 

We consider the following one-parameter subgroups of SO(4): 

0 ii 
0 l,coss+(l -cos.9~m+sinsZx 1 / 1 
toss ii sin .F 

-2sins l3 - (1 -coss)Zti I 
i pii = 1, .SER . 

(2.12) 

(2.13) 

In order to determine the vector fields Z. A’ and ri. B** that these subgroups induce on 

M_ by means of CT, we calculate the corresponding Lie derivations of *FM_: 

(=YiPn:s*f> (E,q) := ~I_l$/.P) [j-o +sn*B, (6, +“I-& $1. 

For this, we introduce an atlas {(UC, k”)] E = + ] on M_, consisting of the charts 

U”= {([,‘l)‘M_I 1+&O > 01, F= + _-) (2.15) 

and the coordinate mappings 

k”: U”+ Rb, x;(t, 17) = Ei!(l +&to), 

Yf(E, ?I) = 71i(l +EEO)-EiTO~ i= 1,2,3, E= +. 
(2.16) 

Here, the x: and ~7 are the composition of k” with the ith and (i+3)rd coordinate pro- 

jections in R6, respectively. We will also consolidate the components x: and ~1; to two 

R3-valued functions X” and y, respectively, and use the Euclidean scalar product “f ” 

and norm squared. The image of U” in R6 is the set V = ((-vi, yi) E R61 jJ” # 0). The 

inverse of (2.16) is then defined on V by m 

170 = -F?(E, r])*4;8((, 7j~), i = 1,2,3. 

In U-n U, we have 

(2.17) 

_y:E = g/(x”)“, 
I ?‘i 

--E = (J;“)2J$ - 2h.E . p&y;, I’ = 1,2,3. (2.18) 
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For the l-form G from (2.9) and the symplectic form 6 from (2.8) we then have 
3 

;Iu” = x”.@, LJlJ” = 
FL 

’ d-x: A dy; , (2.19) 
i=l 

that is, the atlas chosen consists of symplectic charts. The Poisson bracket of two func- 

tions f, g E BM- thus has, locally, the form 

(2.20) 

whereby the partial derivatives are defined by 

+$ (6, q) := ai(_f” CO-‘) (k”(E~ 7))s 

$$ (5, ~7) := ai+3(fO (k”)-‘) (k”(E, v)), i = 1,2,3, 
I 

with the partial derivatives a,, . . . , 8, in the coordinate directions of R6. Our choice of 

a symplectic atlas was inspired by the paper of J. Moser [9]. 

Thus, on U”, we obtain the following formulas for the Lie derivations from (2.14): 

3 

??A; = 
c ( 

a a 
&ijk 

j.k=l 
$m+Yj~ 3 

1 

44$ = -& l-(2)2 a 2 a 
. 2 

ax.+xp.dx’-Xe*j’ayq+ 
i 

.- 

+ (yp _ ;;q_jP) . _a. 
I aya 9 

i= 1,2,3. 

We define the functions LF, K: in S&f_ by 

L*(~,T) := 2 &ijk5fjqk, K:(C, 17) := Voti-EoVi- 

j,k=l 

For their partial derivatives, we obtain 

ai2: ---z 
axj 

aKi* 

axj 

* 

-ayj 
-= 

3 3 

c 
&ijkY:, 

aL: 
___ = - 

w 
c 

&ijk xi 3 

k=l k=l 

&(X;yq -xTyj-- 32” * jFSij), 

(2.21) 

(2.22) 

(2.23) 
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These serve to show, for one thing, that these functions form the Lie algebra of the group 

SO(4) under the Poisson bracket, that is, that the following relations hold: 

(LT, Lj*> = 2 EijkLt, 
k=l 

{LT, &*> = kt EijkKz, 

{KT, K,?} = 2 EijkLz. 

(2.24) 

k=l 

On the other hand, we can see that the Lie derivations in (2.21) can be written in the 

following way : 

3 (2.25) 

Jzg = i = 1,2,3. 

The last equations mean that the vector fields AT and BT are Hamiltonian and are derived 

from the Hamilton functions Lf and KF. 

We can now carry out the same analysis for the action -c of R on M_. Let C denote 

the basis element of the Lie algebra of R for which exp(tC) = t E R holds. The induced 

vector field C* on M_ is then given by the Lie derivation 

(Yc*.f) (E, 11) = j~n$/t) [fo r(t, 65, T))-f(lY dl + 

We define a function H* in M_ by 

H*(c$, q) = -1m2/(2$). 

For its partial derivatives, we obtain 

aH* 8ma2xf dH* 4ma2y; 

?xf -- = (jjE)Zqpj% 
JY; = (<@)‘(1+ (?)2)2 

Thus, the Lie derivation can be written in the form 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

from which it follows that H* is a Hamilton function for the vector field C”. Finally, 

we can verify that H* commutes with the functions L$, KF under the Poisson bracket: 

(LT,H”)=O, (KF,H*)=O, i= 1,2,3. (2.30) 

We summarize the last results in 
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THEOREM 4. The actions o of SO(4) and t of R on M- de$ned before Theorem 3 are 

globally Hamiltonian, that is, the vector fields on M_ generated by the one parameter sub- 
groups are globally Hamiltonian. The basis elements Ai, Bi, i = 1, 2, 3 (cf. (2.1 l)), of the 
Lie algebra of SO(4) and C of the Lie algebra of R correspond to the Hamilton functions 
Lr, Kf, i = 1, 2, 3, from (2.22) and H* from (2.27), respectively. 

The connection between Theorem 4 and the Kepler problem is given by the following 

theorem. 

THEOREM 5. The functions LT, Ki*, i = 1, 2,3, and H* on M_ are extensions of the 

components L; of the angular momentum, Ki- of the modified Runge-Lenz vector and of 
the energy H of the Kepler problem (cf. (1. I), (1.2), (1 .l l)), respectively. More exactly, 

we have: 
LTIN_ 0 F = L;, KtIN- 0 F = Ki-, H*jN_ 0 F = H, 

whereby F: 2 + M_ is the symplectic embedding described in Theorems 1 and 2. 

Proof: The proof consists of a simple calculation. For example, (2.1) implies 

H*(&G), rGi,Z;)) = - ma’/ (2 (r(4, P))‘) = P’l(2m)- N/q = H(q, p). E- 

On the basis of these five theorems, we can think of M_ as a regularized model of 

the negative energy part Z- of the phase space of the Kepler problem. Both the tem- 

poral evolution, which is given by the action z of R and the symmetry, which is given 

by the action 0 of SO(4) are described globally. According to Theorem 5, the orbits ML 
of SO(4) under 0 can be thought of as regularizations of the energy hypersurfaces ZE 

with energy E = -ma2/2r2 in phase space. Since SO(4) acts globally on M1. and the 

singular submanifold N, intersects every ML according to (2.4), the action of SO(4) 

on Z is certainly not globally defined. The temporal evolution is periodic. The orbits 

of the temporal evolution intersect N, if and only if the initial conditions are such that 

either F and Ij are parallel or For ?j = 6 Equivalent to that is vanishing angular momentum 

z = 0. Thus, the temporal evolution does not yield a global flow on Z_. The physical 

meaning of the orbits with z = 0 is that of collision orbits, which go into the origin 

of configuration space. The regularized model gives the picture of a periodic reflection 

at the origin as the spatial motion in a collision orbit. 

We add a note on the transcendental equation (2.5). If we let the operation z of R 
act on a point (6, 7) E M- , then the angle evolves, using (2.5), according to the equation 

y(t) = t0(t)siny(t)-(y2)-1/2170(t)cosy(t) 

= ~osin(y(t>+o,t)-(172)-“2Tocos(y(t)+o,t), 
or, if we put 

to = (6; + $/rj’)‘/‘cos oV t, , q. = (7’6: + 1;7i)1/2sin tori to 

with a suitable constant to: 

y(t) = (5‘~+~~/q2)‘/2sin(y(t)+~,(t-to)). 
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If we set y(t) +w,(t - t,) = : u(t) and notice that 0 Q &+ $/$ = 1 +2HLZ/ma2 < 1 

and wV = (- 2mH)3/2/m2a, then we obtain the Kepler equation for the excentric anomaly U: 

(-2mH)3’Z/(m2a) (t-to) = ~(t)-(l+2HL~/ma~)‘~~sinu(t), u(t,) = 0. (2.31) 

Thus w describes the aberration of the excentric from the mean anomaly. Equation (2.5) 

is thus to be interpreted as a generalization of the Kepler equation. 

3. The positive energy case 

In this section we treat the positive energy part Z+ of the phase space of the Kepler 

problem. Since the proofs and calculations are largely parallel to those of the previous 

section, we will restrict ourselves to the discussion of technical peculiarities of the theorems. 

As in the last section, we will think of the functions qi, pi and H as well as the symplectic 

form w = 5 dqir\ dpi as being defined only on L’, in order to avoid the notation of 
i=l 

restrictions. We will often use the Minkowski scalar product in R4 in this section. In 

order to avoid confusion with the Euclidean scalar product, which we denote by a dot, 

we will use an asterisk for the Minkowski scalar product and define it by 

3 

x*y := x,y,- 
c 

Xk_yk = soy0 - 2. j) xi := x*x, x, y E R4. (3.1) 
k=l 

We consider the following functions on S,: 

($--gj)coshx-qjsinhx, 

(3.2) 

x := (2mH)“‘/(mk)tj*j. 

We define a six-dimensional C”-submanifold M, of R4 x R4 by 

M, := {(E,T~)ER~xR~~ 5; = 1, to > 0, h+q = 0, 7j: CO>. (3.3) 

The equations in (3.3) tell us that 5 lies in the forward half H3 of the two-sheeted unit 

hyperboloid (l: = 1 } in R4, that 7 is tangential to H3 in the point 6 and that r] is not 

zero. M+ is thus diffeomorphic to the total space (T*H3)X of the cotangent bundle on 

H3 with the zero section removed. Since H3 is diffeomorphic to R3, M+ is ah diffeo- 

morphic to R3 x (R3\(0}). We define two Cm-submanifolds of M+ by 
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N; := {(t,$~M+l 50 = I}, N+ := M+\N;. (3.4) 

Nk is thus diffeomorbhic to the punctured cotangent space on H3 at the point 6 = (1, G) 

and thus also to R3\{O}. N, is open and dense in A?+. 

THEOREM 6. The functions defined in (3.2) map Z+ diffeomorphically onto N+. 

The condition 5,, > 0 requires some comment, and can be proven as follows: 

coshx- (2mH)1’2 q.psinhX 

coshx- (2”1’2 qpcoshx 
ma 

= [(l +2Hq2p2/maz)1~2- (2Hq2p2/ma2)‘J2] coshx > 0. 

The proof of the theorem uses the inverse mapping from N+ onto 2, , which is given by 

4= ~[-(~O-cosh~) (-~~)-‘/2~+ ((-~~)-“2~0+sinh~)~, 

ma [(-&-1’2 ;risinhe+Fcoshe] 
’ = (-~~)1~2[~Ocoshe+(-~~)-‘~2~,sinhe-1]’ (3.5) 

e = Eosinhe+(-~:)-‘/2~0coshe. 

The last equation, which defines e implicitly as a function of (5, q), is the analog of the 
generalized Kepler equation in (2.5). The proof of the existence of a solution of this 
equation uses the inequality 

&?-r];/(--?# 2 ~(:-1;19/(-rlf)-(Ex~)2/(-r13) = 1. 

We define the functions i,, t,, a = 0, 1,2, 3, in F-M_+ as the restriction to M+ of 
the coordinate functions on R4 x R4. Then we can define a closed, non-degenerate 2-form 
& on M, by 

(3.6) 

We define l-forms v on Z, and 6 on M, by 

v := -5*dy, ; := -[ad+ (3.7) 

Then we have 6 = dG. (M+, C?J) is a symplectic manifold. By means of a calculation 
similar to the one in (2.IO)ff., one can show that v = ij + dp+d(<. 5) holds and thus 
w = dv = F*(dv^JN+) = F*(&lN+), whereby F: Z; -+ M+ is the embedding from The- 
orem 6. 

THEOREM 7. cc) = F*(&jN+), i.e. F is a symplectomorphism from (z+, W) OntO 

(N+ 3 &IN+). 
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We now define global actions o and t of the groups SO(l, 3)0 and R : = (R, +) on 

M+ by 

@(R, (E, rl)). := WE, &), R E SW, 3)o 

and 

~(t, (6, q)) := (~coshw,t-r(-TZ)-l’Zsinhw,t, rcosho,t-5(-r:)‘12sinho,r), 

tER, W1 := m~2(-_17~)-3/2, 

respectively. Then the next theorem is parallel to Theorem 3. 

THEOREM 8. (SO(l) 3),, 0) and (R, t) are C” Lie transformation groups of M, . 

The orbits qf SO(l) 3)0 under o in M, are the 5-dimensional C” submanifolds M:, which 

are parametrized by (- r$)“’ = r, r E R; = {x E RI x > 01. The actions o and z com- 

mute. Any orbit of R under x in M, is completely contained in a submanifold Mt. 

We can think of the hypersurface M; in phase space as a 2-sphere bundle over H”. 

It is diffeomorphic to R3 x S2. 
As a basis of the Lie algebra SO(l, 3),, we choose the following matrices: 

A3 

B2 

= 

= 

-00 00 

0 0 -10 

01 00’ B1 

-00 00 I 

0 0 -10 

00 00 1 -10 00’ 
B3 

._ 00 00 

(3.8) 

They obey the commutation relations 

[Ai, Aj] = ktijk Ak, [Ai, Bj] = teijtBk9 [Bi, Bj] = -feijkA,. (3.9) 
k=l k=l k=l 

The one parameter subgroups defined by 

0 0 
0 1,c0ss+(1-c0ss)~ri+sins~x 

coshs -Gsinhs 

-iisinhs 13+ (coshs- I)% 
121 = 1, PER , 

(3.10) 
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generate the vector fields ii. A*, ii * * on AI+, which are induced by the action u, 

analogous to (2.14). Since H3 is contractible, we can define a symplectic coordinate 

system globally on M, by means of 

(X,3): M+ -+ R3xR3, x(E, q) := F, J;o, 7) : = ?i - &&I~ (3.11) 

The inverse is 

50 = (1+$5, q)2)1’2, r = “x(E, ?j9, 

To = %, r) - 3G, d (1+%, ~)y (3.12) 

;li = F([, q)+%, q).Y(l, r)ql, q). 

One easily verifies that G = -[*de = -u . dg, and & = dv” = d?A dy hold and thus 

that (3.11) defines a global symplectic chart on (M, , G). Then we can calculate the Lie 

derivations corresponding to A:, Bjr, i = 1,2, 3, 

We define the functions LF, KT, i = 1,2, 3, in .qM+ by 

LF(E, r/) = 2 cijktjqk = 

j,k=l 

‘2 &i,kXj(‘!, q)l)Yk(E, 111, 

j,k=l 

KF(f,v> = ~oEi-5o~i = - (l+g(E, T/)2)1’2yi(E, 7). 

Then we immediately obtain 

_$f*= 
3 a~: a c( a~* a 

Ai 
j=l aY.i axj 1 c7Xj ayj ’ 

YBf = + ( E._L~_E&La$ 
e a_b axi 1 . 

, . 
For the action t of R on M,, we have 

Yc‘ = aff* a 
ayj axj 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

whereby C is the element of the Lie algebra of R for which exp(tC) = t holds for all 

I E R and H* is the function in FM, defined by 

(3.17) 
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The Poisson brackets for the functions LF, KT, i = 1,2, 3, and H* are 

(3.18) 

{KF,Kjc} = -2 eijkL:T {L:, H*) = {K;, H*) = 0. 
k=l 

The next theorem follows from the last results. 

THEOREM 9. The acfiotis o of SO(l) 3),, and z ?f R on M, de$ned before Theorem 8 

are globally Hamiltonian. The basis elements Ai, Bi, i = I, 2, 3, (cf. (3.9)) and C of the 

Lie algebras of SO(l, 3)0 and R correspond to the Hamilton functions Lr, KT, i = I , 2, 3, 

of (3.14) and H* of (3.17), respectively. 

The following theorem is the result of a simple calculation. 

THEOREM 10. The functions LF, K,!, i = 1, 2, 3, and H* are extensions onto M, of 

the components L: of angular momentum, K+ cf the modl$ed Runge-Lenz vector and the 

energy H of the Kepler problem, respectively, which are defined on A-+. That is, we have 

LFJN+ 0 F = L:, K;(N+ 0 F = K;t, H*jN+ 0 F = H, 

whereby F: X, + M, is the symplectic embedding described in Theorems 6 and 7. 

The commentary at the end of Section 2 also makes sense in the present case of posi- 

tive energy. We want to emphasize that the symmetry group SO(l, 3),, operates transi- 

tively on the hypersurfaces M; of constant energy and that every M: meets the singular 

submanifold NL . Therefore, for positive energies, the regularization also allows one to 

globalize the time flow and the symmetry operations simultaneously. In this case, Kepler’s 

equation 

(2mH)“‘“/(m’cr) (t--to) = (1 +2HLL/ma”)1’2sinhv(t)-v(t), 

v(t,) = 0, 
(3.19) 

follows from the last equation in (3.5) with the substitutions 

Eo = (5; -vi/( - $))“‘cosh c+ to, 

q. = (E~(-Ijr:)-r~)1’2sinh(I,,~t,, p(t) = v(f)+w,(t---to). 

4. Complementary remarks 

In Sections 2 and 3, we have regularized the negative and positive energy parts of the 

phase space of the classical Kepler problem in such a way that both the time flow and the 

symmetry operations are realized in a global and simple way. In conclusion, we want 

to discuss two still open questions. 

1. The phase space hypersurface 2, of zero energy: It is diffeomorphic to (R3\ (0)) X 

x S’. Because of the possibility of collisions at q = 0, the Hamiltonian vector field does 

not generate a global flow here either. By adding a 2-sphere with infinite momentum to 
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Z,,, one can achieve a regularization with a global time flow here as well. The regularized 

manifold MO is diffeomorphic to R3 x S2 and thus of the same diffeomorphism type as 

the regularized hypersurfaces of constant positive energy. One can easily make MO into 

a homogeneous space for the inhomogeneous rotation group ISO(3). We have also found 

a transitive action of ISO(3) on M,, that commutes with the time flow, but we are not 

clear about the meaning of this within the context of Hamiltonian mechanics. 

2. The action of the non-symmetry groups on the regularized phase space models 

M_ and M+: As is known, every diffeomorphism of a manifold induces a symplecto- 

morphism of the cotangent bundle of the manifold with its canonical symplectic structure 

(cf. Abraham-Marsden [l], p. 97). 

Since such a symplectomorphism maps the cotangent spaces linearly, it leaves the zero 

section of the cotangent bundle invariant. Applied to our models, that means that the 

group of diffeomorphisms of S3 (resp. H3) induces canonical transformations of M_ 

(resp. M,). 

In the case of negative energy, we can let the de Sitter group SO(l, 4), act as a group 

of diffeomorphisms of S3 in such a way that the restriction to the subgroup SO(4) co- 

incides with the symmetry operation described in Section 2. Every element of SO(I , 410 

can be written as a product of an SO(4) rotation and a Lorentz “boost” of the form 

L = (l-&)-l’2 $1 -z?)-1’2 
” 

[ o(l -VZ)-l’Z l,+ ((1 -rP)-l/2-- l)VV/V2 1 
with a four-component velocity o E {V E R4j v2 < l}. The action of L, on S3 can then 

be defined by 

The form of this action is suggested by the well-known action of the Lorentz group 

SO(l) 3)0 on the 2-sphere. The induced action of L, on (T*S~)~ z M_ is then described 

by the additional mapping 

Because of 

(;2L(E)17)2 = (l:-$, q2 and 0 c ’ -v2 < 00, (1 +a * 5)2 

this action is transitive on M_. Since the action of L, does not commute with the time 

flow, SO(1, 4)0 operates as a non-symmetry group on M- . 

In the positive energy case, we have not been able to define an action of either of the 

de Sitter groups SO(l, 4), or SO(2, 3),, on H3 in such a way that the restriction to the 

subgroup SO(1, 3), would be the symmetry operation described in Section 3. 
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