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Abstract

The Ligon-Schaaf regularization (LS mapping) was introduced in 1976 and has been used

several times. However, we are not aware of any direct usage of the inverse mapping, per-

haps since it appears at first sight to be quite complex, involves the use of a transcendental

equation (referred to as the generalized Kepler equation) that cannot be solved in closed

form, and lacks smoothness near the collision point. Here, we provide some insight into the

significance of this equation, along with a very simple derivation and confirmation of the

inverse LS mapping. Then we use numerical methods to investigate three applications: 1)

solutions of the Kepler function, 2) calculation of orbits including time-of-flight data based on

the Delaunay Hamiltonian, and 3) numerical evidence for the Birkhoff conjecture for the cir-

cular restricted 3-body problem.

Introduction

The Ligon-Schaaf mapping (LS mapping) was introduced in 1976 [1] based in part on a

Diplom thesis (similar to master’s thesis) which has recently been translated into English [2–

4]. Since then, the paper has been cited numerous times [5–27]. In particular, a few papers

have provided very significant insight into the properties of the mapping and the symplectic

manifolds involved in the regularization that it achieves [8, 17].

The LS mapping is a modified stereographic projection, converting phase space in Carte-

sian coordinates to phase space over a 3-sphere, and maps the collision orbits to the north pole

of the sphere. This makes it possible to regularize the Kepler problem by adding the poles to

the original space. For the analysis of symmetry, it maps both angular momentum and the

Runge-Lenz vector to angular momentum on the sphere and maps the Kepler Hamiltonian to

the Delaunay Hamiltonian. The result is a symmetry-preserving diffeomorphism between the

two phase spaces.

The thesis which preceded the paper had the goal of calculating the classical Kepler problem

as an example of how symplectic differential geometry could be used in theoretical physics.

After introducing the concepts and discussing some traditional topics, such as the conserva-

tion of angular momentum, we examined the conservation of the Runge-Lenz vector and

asked ourselves if the corresponding symmetry was global. In chapter VIII, we searched for the
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integral curves of the Runge-Lenz vector by calculating the Poisson brackets with the Cartesian

coordinates p, q. However, these equations were quite complex, and we didn’t find a full solu-

tion. As a kind of coordinate transformation, in chapter IX, we applied the Moser mapping

[28], which is based on the stereographic projection that had been used for the quantum-

mechanical analysis of the hydrogen atom [29]. After applying this mapping, the flow of the

Runge-Lenz vector could be integrated directly, demonstrating that this is in fact a global sym-

metry. However, the solutions involved two different angles, and the second one required solv-

ing a transcendental equation that cannot be solved in closed form. Then we discovered that

we could modify the Moser mapping in such a way that this transcendental equation disap-

peared from the solutions, and both angular momentum and the Runge-Lenz vector generated

simple rotations on the sphere S3. In other words, we had defined the LS mapping and showed

that it converts the symmetry of the Kepler problem to the canonical action of SO(4).

In the paper of 1976, the LS mapping was presented in detail, the symmetry properties of

the symplectic manifolds were discussed, and the inverse mapping was presented. Here, the

transcendental equation that we removed from the action of the Runge-Lenz vector reappears

as part of the inverse mapping, and it was shown to be a kind of “generalized Kepler equation”.

The inverse LS mapping lacks smoothness in the sense that, given a smooth function f(q,p)

or even just f(q), the function f � FLS
−1 = f � F−1 does not necessarily extend to a smooth func-

tion on the full regularized set, which is the cotangent bundle of a sphere. This has been a prob-

lem in several applications, as discussed for example in the context of the averaging method in

[8] (last paragraph before section 2). We also expect that this will cause problems in the context

of Kolmogorov-Arnold-Moser (KAM) theory. We observed this lack of smoothness near the

collision point in Observation 10 (see S1 Document, Discussion of Observation 10 and S6 Fig.

Sun-Jupiter energy and curvature 2).

In this paper, we apply the factorization of the LS mapping, as formulated by Cushman and

Bates [9]. This way, the mapping is split into an algebraic part and a trigonometric part, which

is basically a rescaled rotation. Both parts are very easy to invert, which we do in the main text

of the paper. In particular, the inverse of the rescaled rotation is another rotation in the oppo-

site direction, which shows that the angle used in the inverse mapping is exactly the same

angle as in the forward mapping. When we take account of this fact, all calculations involving

the inverse mapping are greatly simplified. Then we calculate some identities and observe that

the angle is transformed this way: φ ¼
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

q � p ¼ x0sin φð Þ � Z0

Z
cos φð Þ. In other words, the

transcendental equation used by the inverse mapping is the only way we have of finding the

angle φ when we move in the reverse direction.

Based on this foundation, we create a numeric solution for all mappings and use it for the

following applications: 1) investigation of the “Kepler function” generated by the “generalized

Kepler equation”: φ = x � sin(φ) − y � cos(φ), 2) calculation of time-of-flight for Kepler orbits

using the Delaunay Hamiltonian and the inverse LS mapping, and 3) numerical evidence for

the Birkhoff conjecture for the circular restricted 3-body problem. It has often been observed

that the Kepler laws can be deduced by geometrical means, without solving differential equa-

tions, but finding the time of flight requires solving the Kepler equation. In our second applica-

tion, this time dependency is found in closed form on T�S3, and the Kepler equation is solved

“implicitly” as part of the inverse LS mapping. The third application provides evidence for the

Birkhoff conjecture within the framework of holomorphic curve theory, but all calculations in

this paper are “elementary calculations” based solely on traditional algebra and trigonometry.

This investigation begins with an alternative, analytical proof for the Birkhoff conjecture based

on the rotating Kepler Hamiltonian[13] and then covers numerical calculations based on the

circular restricted 3-body Hamiltonian.

Inverse LS Mapping
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Negative energy

Notation

We begin with an overview and a comparison with notation used by Cushman and Bates[9].

Fig 1 provides an overview of the mapping in our notation.

Here, we use the notation from our original paper, and provide a detailed comparison with

the Cushman and Bates notation in the supporting information.

Forward LS mapping F = F2 � F1

The forward LS mapping is defined for H< 0, corresponding to the elliptical orbits of the Kep-

ler Hamiltonian, and q 6¼ 0, meaning that collision orbits are excluded.

Definition 1. For negative energy and q 6¼ 0, the forward LS mapping is defined by

i. Mapping F

H ¼
p2

2
�

1

q
ð1Þ

φ ¼
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

q � p ð2Þ

x0 ¼ ðp
2q � 1ÞcosðφÞ þ

ffiffiffiffiffiffiffiffiffiffi
� 2H
p

q � p sinðφÞ ð3Þ

ξ ¼
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

qpcos φð Þ þ
q
q
� ðq � pÞp

� �

sinðφÞ ð4Þ

Z0 ¼ � q � p cosðφÞ þ
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p p2q � 1ð Þsin φð Þ ð5Þ

η ¼ �
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

q
q
� ðq � pÞp

� �

cosðφÞ þ qpsin φð Þ ð6Þ

ii. Mapping F1

r0 ¼ p2q � 1 ð7Þ

Fig 1. LS mapping. The LS mapping (forward mapping F and inverse mapping G). The factorization consists of an algebraic part (F1) and a trigonometric part (F2).

The notation of Cushman and Bates is shown in parentheses.

https://doi.org/10.1371/journal.pone.0203821.g001
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r ¼
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

qp ð8Þ

s0 ¼ �
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

q � p ð9Þ

s ¼ �
q
q
� ðq � pÞp

� �

ð10Þ

iii. Mapping F2

φ ¼ � s0 ð11Þ

F2 ¼

cosðφÞ � sinðφÞ
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p sin φð Þ

1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p cos φð Þ

0

B
@

1

C
A ð12Þ

x0 ¼ r0cosðφÞ � s0sinðφÞ ð13Þ

ξ ¼ rcosðφÞ � s sinðφÞ ð14Þ

Z0 ¼
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p s0 cosðφÞ þ

1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p r0sin φð Þ ð15Þ

η ¼
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p scosðφÞ þ

1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p rsin φð Þ ð16Þ

The mappings FLS = L � S in the Cushman and Bates notation, corresponding to F = F2 �

F1, are provided in the supporting information.

Proposition 1. F = F2 � F1.

Proof. This is a simple substitution. ■
In the factorization presented by Cushman and Bates, F1 is the algebraic part and F2 is the

trigonometric part, which can be understood as a rescaled rotation.

At this point, the mapping F1 can be inverted directly (giving G1), via elementary calcula-

tions (see below), and the matrix F2 can be inverted directly (giving G2). Then, they can be

combined to give G. The definition of φ follows from identity (36).

Definition 2. For negative energy, the inverse LS mapping is defined by

i. Mapping G

φ ¼ x0sin φð Þ �
Z0

Z
cos φð Þ ð17Þ

Inverse LS Mapping
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q ¼ Z2 � ξ
Z0

Z
� sinðφÞ

� �

þ
η
Z

x0 � cosðφÞð Þ

� �

ð18Þ

p ¼
ξcosðφÞ þ η

Z
sinðφÞ

Z 1 � x0cosðφÞ � Z0

Z
sinðφÞ

� � ð19Þ

ii. Mapping G1

q ¼
1

2H
sð1 � r0Þ þ rs0½ � ð20Þ

p ¼
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

r
ð1 � r0Þ

ð21Þ

iii. Mapping G2

φ ¼ x0sin φð Þ �
Z0

Z
cos φð Þ ð22Þ

G2 ¼
cosðφÞ

ffiffiffiffiffiffiffiffiffiffi
� 2H
p

sinðφÞ

� sinðφÞ
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

cosðφÞ

 !

ð23Þ

r0 ¼ x0cos φð Þ þ
Z0

Z
sin φð Þ ð24Þ

r ¼ ξcos φð Þ þ
η
Z

sin φð Þ ð25Þ

s0 ¼ � x0sin φð Þ þ
Z0

Z
cos φð Þ ð26Þ

s ¼ � ξsin φð Þ þ
η
Z

cos φð Þ ð27Þ

The value of φ in (17) comes from the identity (36).

The denominator of (19), 1 � x0cos φð Þ � Z0

Z
sin φð Þ 6¼ 0, and the denominator of (21), 1 − r0

6¼ 0, because, following the identity (37), � 2Hq ¼ 1 � r0 ¼ 1 � x0cos φð Þ � Z0

Z
sin φð Þ, and the

mapping is only defined for H< 0, corresponding to the elliptical orbits of the Kepler Hamil-

tonian, and q 6¼ 0, meaning that collision orbits are excluded.

Proposition 2.

i. G = G1 � G2.

ii. G1 ¼ F � 1
1

Inverse LS Mapping
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iii. G2 ¼ F � 1
2

iv. G = F−1.

Proof. (i) We begin with the definition of q from G1,

q ¼
1

2H
sð1 � r0Þ þ rs0½ �

substitute the values for r and s from G2,

q ¼
1

2H
� ξsinðφÞ þ

η
Z

cosðφÞ
� �

1 � x0cosðφÞ �
Z0

Z
sinðφÞ

� �

þ ξcosðφÞ þ
η
Z

sinðφÞ
� �

� x0sinðφÞ þ
Z0

Z
cosðφÞ

� �� �

expand the expression,

q ¼
1

2H
� ξsinðφÞ þ

η
Z

cosðφÞ þ ξx0sinðφÞcosðφÞ � x0

η
Z

cos2ðφÞ þ ξ
Z0

Z
sin2ðφÞ

�

�
ηZ0

Z2 sinðφÞcosðφÞ � ξx0sinðφÞcosðφÞ � x0
η
Z

sin2ðφÞ þ ξ Z0

Z
cos2ðφÞ þ ηZ0

Z2 sinðφÞcosðφÞ�
collect similar terms,

q ¼
1

2H
� ξsinðφÞ þ

η
Z

cosðφÞ � x0

η
Z
þ ξ

Z0

Z

� �

and substitute the value of H from (35).

q ¼ Z2 � ξ
Z0

Z
� sinðφÞ

� �

þ
η
Z
ðx0 � cosðφÞÞ

� �

Now we take the definition of p from G1.

p ¼
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

r
ð1 � r0Þ

and substitute the values or r and s from G2.

p ¼
ξcosðφÞ þ η

Z
sinðφÞ

� �

Z 1 � x0cosðφÞ � Z0

Z
sinðφÞ

� �

(ii) We begin with F1 (Eqs (7) through (10)).

Now we can solve (7) for q:

r0 � 1 ¼ p2q � 2 ¼ 2q
p2

2
�

1

q

� �

¼ 2Hq:

q ¼
1

� 2H
1 � r0ð Þ ð28Þ

Then we can solve (8) for p:

p ¼
r
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

q
¼

ffiffiffiffiffiffiffiffiffiffi
� 2H
p r

ð1 � r0Þ
:

This gives us Eq (21). With this, we can solve (10) for q:

q ¼ � qsþ ðq � pÞqp ð29Þ

Inverse LS Mapping
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substitute q, q � p and p from (28), (9), and (21),

q ¼
1

2H
1 � r0ð Þsþ

s0

�
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

1

� 2H

� �

1 � r0ð Þ
ffiffiffiffiffiffiffiffiffiffi
� 2H
p r

ð1 � r0Þ

and simplify.

This gives us Eq (20). The result is now mapping G1.

(iii) The mapping G2, the inverse of F2, can be obtained by reversing the direction of rota-

tion and inverting the scaling factor. In addition, we also use a formula for the angle φ (36)

and for expressing the Hamiltonian in terms of the Delaunay Hamiltonian � 1

2Z2 in (35).

(iv) This is a direct result of (i)-(iii). ■
The corresponding derivation of FLS

−1 = S−1 � L−1 by substitution and the mappings FLS
−1 =

S−1 � L−1, L−1 and S−1 in the Cushman and Bates notation are provided in the supporting infor-

mation.

Identities

Proposition 3. The following identities hold:

r2 ¼
P3

i¼0
r2

i ¼ 1 ð30Þ

P3

i¼0
risi ¼ 0 ð31Þ

s2 ¼
P3

i¼0
s2

i ¼ 1 ð32Þ

x
2
¼
P3

i¼0
x

2

i ¼ 1 ð33Þ

P3

i¼0
xiZi ¼ 0 ð34Þ

Z2 ¼
P3

i¼0
Z2

i ¼ �
1

2H
ð35Þ

φ ¼
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

q � p ¼ � s0 ¼ x0sinðφÞ �
Z0

Z
cosðφÞ ð36Þ

� 2Hq ¼ � p2qþ 2 ¼ 1 � r0 ¼ 1 � x0cosðφÞ �
Z0

Z
sinðφÞ ð37Þ

Li ¼ qjpk � qkpj ¼
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p rjsk � rksj

� �
¼ xjZk � xkZj ð38Þ

Mi ¼
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p

qi

q
þ piðq � pÞ � qip

2

� �

¼
1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p r0si � ris0ð Þ ¼ x0Zi � xiZ0 ð39Þ

H ¼
p2

2
�

1

q
¼ �

1

2Z2
ð40Þ

Inverse LS Mapping
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p2

2
�

1

q
þ q2p1 � q1p2 ¼ H þ

1
ffiffiffiffiffiffiffiffiffiffi
� 2H
p r2s1 � r1s2ð Þ ¼ �

1

2Z2
þ x2Z1 � x1Z2 ð41Þ

Proof. These are all direct results the definitions and can be calculated in either direction, i.e.

solely based on the forward mapping or the inverse mapping (details in supporting information). ■
The identity (36) for the angle φ is very important, because it tells us how to calculate φ in

the inverse mapping. We refer to the resulting equation as the “generalized Kepler equation”.

In identities (38) and (39), the angular momentum and the rescaled Runge-Lenz vector are

mapped to angular momentum. Identity (40) maps the Kepler Hamiltonian to the Delaunay

Hamiltonian. Identity (41) shows that the Hamiltonian of the rotating Kepler problem also

keeps its form.

The Hamiltonian of the circular restricted 3-body problem does not yield a simple form;

the terms involving sin(φ) and cos(φ) do not cancel out. We treat this case numerically in the

applications.

Positive energy

Mapping F = F2 � F1 (LS forward)

This is the forward LS mapping, and is defined for H> 0, corresponding to the hyperbolic

orbits of the Kepler Hamiltonian, and q 6¼ 0, meaning that collision orbits are excluded.

Definition 3. For positive energy and q 6¼ 0, the forward LS mapping is defined by

i. Mapping F (the first equation is the same as Eq (1))

H ¼
p2

2
�

1

q

φ ¼
ffiffiffiffiffiffiffi
2H
p

q � p ð42Þ

x0 ¼ ðp
2q � 1ÞcoshðφÞ �

ffiffiffiffiffiffiffi
2H
p

q � psinhðφÞ ð43Þ

ξ ¼
ffiffiffiffiffiffiffi
2H
p

qpcoshðφÞ þ
q
q
� ðq � pÞp

� �

sinhðφÞ ð44Þ

Z0 ¼ q � pcoshðφÞ �
1
ffiffiffiffiffiffiffi
2H
p p2q � 1ð ÞsinhðφÞ ð45Þ

η ¼ �
1
ffiffiffiffiffiffiffi
2H
p

q
q
� ðq � pÞp

� �

coshðφÞ � qpsinhðφÞ ð46Þ

ii. Mapping F1

r0 ¼ p2q � 1 ð47Þ

r ¼
ffiffiffiffiffiffiffi
2H
p

qp ð48Þ

Inverse LS Mapping
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s0 ¼ �
ffiffiffiffiffiffiffi
2H
p

q � p ð49Þ

s ¼
q
q
� ðq � pÞp

� �

ð50Þ

iii. Mapping F2

φ ¼ � s0 ð51Þ

F2 ¼

coshðφÞ sinhðφÞ

�
1
ffiffiffiffiffiffiffi
2H
p sinhðφÞ �

1
ffiffiffiffiffiffiffi
2H
p coshðφÞ

0

B
@

1

C
A ð52Þ

x0 ¼ r0coshðφÞ þ s0sinhðφÞ ð53Þ

ξ ¼ rcoshðφÞ þ ssinhðφÞ ð54Þ

Z0 ¼ �
1
ffiffiffiffiffiffiffi
2H
p s0 coshðφÞ �

1
ffiffiffiffiffiffiffi
2H
p r0sinhðφÞ ð55Þ

η ¼ �
1
ffiffiffiffiffiffiffi
2H
p scoshðφÞ �

1
ffiffiffiffiffiffiffi
2H
p rsinhðφÞ ð56Þ

F1 is the algebraic part (factor) of the forward LS mapping and F2 is the trigonometric part.

The 2x2 matrix representing F2 is very much like a rotation matrix, and is easy to invert,

resulting in mapping G2.

Proposition 4. F = F2 � F1.

Proof. This is a simple substitution. ■
Definition 4. For positive energy, the inverse LS mapping is defined by

i. Mapping G

φ ¼ x0sinhðφÞ þ
Z0ffiffiffiffiffiffiffiffi
� Z2
p coshðφÞ ð57Þ

q ¼ � Z2 ξ
Z0ffiffiffiffiffiffiffiffi
� Z2
p þ sinhðφÞ
� �

�
η
ffiffiffiffiffiffiffiffi
� Z2
p ðx0 � coshðφÞÞ

� �

ð58Þ

p ¼ �
ξcoshðφÞ þ ηffiffiffiffiffiffi

� Z2
p sinhðφÞ

ffiffiffiffiffiffiffiffi
� Z2
p

1 � x0coshðφÞ � Z0ffiffiffiffiffiffi
� Z2
p sinhðφÞ

� � ð59Þ

Inverse LS Mapping
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ii. Mapping G1

q ¼ �
1

2H
sð1 � r0Þ þ rs0½ � ð60Þ

p ¼ �
ffiffiffiffiffiffiffi
2H
p

r
ð1 � r0Þ

ð61Þ

iii. Mapping G2

This is the trigonometric part (factor) of the inverse LS mapping.

φ ¼ x0sinhðφÞ þ
Z0ffiffiffiffiffiffiffiffi
� Z2
p coshðφÞ ð62Þ

G2 ¼
coshðφÞ

ffiffiffiffiffiffiffi
2H
p

sinhðφÞ

� sinhðφÞ �
ffiffiffiffiffiffiffi
2H
p

coshðφÞ

 !

ð63Þ

r0 ¼ x0coshðφÞ þ
Z0ffiffiffiffiffiffiffiffi
� Z2
p sinhðφÞ ð64Þ

r ¼ xcoshðφÞ þ
Z
ffiffiffiffiffiffiffiffi
� Z2
p sinhðφÞ ð65Þ

s0 ¼ � x0sinhðφÞ �
Z0ffiffiffiffiffiffiffiffi
� Z2
p coshðφÞ ð66Þ

s ¼ � ξsinhðφÞ �
η
ffiffiffiffiffiffiffiffi
� Z2
p coshðφÞ ð67Þ

The denominator of (59) 1 � x0coshðφÞ � Z0ffiffiffiffiffiffi
� Z2
p sinhðφÞ 6¼ 0, and (61) 1 − r0 6¼ 0, because,

following the identity (104), � 2Hq ¼ 1 � x0coshðφÞ � Z0ffiffiffiffiffiffi
� Z2
p sinhðφÞ, and the mapping is only

defined for H> 0, corresponding to the hyperbolic orbits of the Kepler Hamiltonian, and q 6¼
0, meaning that collision orbits are excluded.

Now we can invert mapping F1 to produce G1 (details in supporting information).

Proposition 5.

i. G = G1 � G2.

ii. G1 ¼ F � 1
1

iii. G2 ¼ F � 1
2

iv. G = F−1.

Proof. This is almost the same as for negative energy (details in supporting information). ■

Identities

The following identities are direct results of the definitions and can be calculated in either

direction, i.e. solely based on the forward mapping or the inverse mapping (details in support-

ing information).

Inverse LS Mapping
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Proposition 6. The following identities hold:

r2 ¼ r2

0
�
P3

i¼1
r2

i ¼ 1 ð68Þ

r0s0 �
P3

i¼1
risi ¼ 0 ð69Þ

s2 ¼ s2

0
�
P3

i¼1
s2

i ¼ � 1 ð70Þ

x
2
¼ x

2

0
�
P3

i¼1
x

2

i ¼ 1 ð71Þ

x0Z0 �
P3

i¼1
xiZi ¼ 0 ð72Þ

Z2 ¼ Z2

0
�
P3

i¼1
Z2

i ¼ �
1

2H
ð73Þ

φ ¼
ffiffiffiffiffiffiffi
2H
p

q � p ¼ � s0 ¼ x0sinhðφÞ þ
Z0ffiffiffiffiffiffiffiffi
� Z2
p coshðφÞ ð74Þ

� 2Hq ¼ � p2qþ 2 ¼ 1 � r0 ¼ 1 � x0coshðφÞ �
Z0ffiffiffiffiffiffiffiffi
� Z2
p sinhðφÞ ð75Þ

Li ¼ qjpk � qkpj ¼ �
1
ffiffiffiffiffiffiffi
2H
p rjsk � rksj

� �
¼ xjZk � xkZj ð76Þ

Mi ¼
1
ffiffiffiffiffiffiffi
2H
p

qi

q
þ piðq � pÞ � qip

2

� �

¼ �
1
ffiffiffiffiffiffiffi
2H
p r0si � ris0ð Þ ¼ x0Zi � xiZ0 ð77Þ

H ¼
p2

2
�

1

q
¼ H ¼ �

1

2Z2
ð78Þ

p2

2
�

1

q
þ q2p1 � q1p2 ¼ H �

1
ffiffiffiffiffiffiffi
2H
p r2s1 � r1s2ð Þ ¼ �

1

2Z2
þ x2Z1 � x1Z2 ð79Þ

Proof. These are all direct results the definitions and can be calculated in either direction,

i.e. solely based on the forward mapping or the inverse mapping (details in supporting infor-

mation). ■
The identities (76)–(79) show that the angular momentum and the rescaled Runge-Lenz

vector both map to angular momentum, the Kepler Hamiltonian maps to the Delaunay Hamil-

tonian, and the Hamiltonian of the planar rotating Kepler problem keeps it form.

Applications

Investigate Kepler function. The inverse LS mapping begins by solving a transcendental

equation (Eq (22))

φ ¼ x0sinðφÞ �
Z0

Z
cosðφÞ

Inverse LS Mapping
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We refer to this as the “generalized Kepler equation”, and define what we call the “Kepler

function”:

KF : ½� 1; 1�
2
! R : ðx; yÞ7!solution of φ ¼ xsinðφÞ � ycosðφÞ ð80Þ

Since we have no solution for the Kepler function KF in closed form, we explore it using a

numeric solution. Here, we numerically solve the generalized Kepler equation and calculate φ
for selected values of x and y. Fig 2 provides an overview of the Kepler function.

The numerical solution, calculated on a grid from -1 to 1 with spacing .01, demonstrates

the following values:

minðφÞ ¼ ð� 1:2587ð1; 1ÞÞ

maxðφÞ ¼ ð1:2587ð1; � 1ÞÞ

minðrðφÞÞ ¼ ð� 4:9081ð1; 0:01Þ � 100ð0:99; 0ÞÞ

maxðrðφÞÞ ¼ ð4:9081ð1; � 0:01Þ � 0:18667ð1; � 1ÞÞ

Calculate orbits and time of flight

This application can be thought of as a warm-up exercise for using the inverse LS mapping.

The results of the calculation have certainly been made many times before, using a slightly dif-

ferent technique. The only new aspect is the way that we use the Delaunay Hamiltonian and

the inverse LS mapping to provide a complete description of orbits.

Here, we provide software that accepts values for q and p and calculates the Hamiltonian,

the period of the orbit, the angular momentum, the Runge-Lenz vector, the values of ξ and η
created by the LS mapping, the true, eccentric, and mean anomaly, the Kepler elements (semi-

major axis, eccentricity, longitude of ascending node O, inclination, argument of pericenter ω,

and time of passage), and the Delaunay variables (‘; g; h; L; G; H). Then we can convert the

coordinates using the LS mapping, calculate the orbit, including time-of-flight, by using the

Delaunay Hamiltonian, and convert back to q and p using the inverse LS mapping. Finally, we

show all Delaunay variables during the orbit. Fig 3 provides an overview of the output of the

software for calculating orbits.

The notation and the calculations used here are described in detail in the supporting

information.

Birkhoff conjecture for the circular restricted 3-body problem

The Birkhoff conjecture was originally formulated in 1915 in an investigation of the 3-body

problem[30] and can be formulated in modern terms as the existence of a global surface of sec-

tion[13]. In turn, the existence of a global surface of section reveals a lot about the orbit struc-

ture and can be used to better understand the dynamics[13].

Based on recent work, it may be possible to use holomorphic curves and confirm the Birkh-

off conjecture by demonstrating that the energy hypersurface is convex[13, 31]. To do that, the

Hamiltonian is mapped to C2
by using the inverse LS mapping, the Levi-Civita mapping, and a

stereographic projection. For the 2-body problem, the Hamiltonian takes a simple form after

applying the inverse LS mapping, but this is not true for the 3-body problem, so we investigate

it using a numerical solution.

Inverse LS Mapping
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Here we introduce the stereographic projection and the Levi-Civita mapping as used in

[13]. We will use these mappings below. Fig 4 provides an overview of the stereographic pro-

jection and the Levi-Civita mapping.

Fig 2. Kepler function. (A) The application allows the user to choose values for x and y, and then plots φ (blue line), xsin(φ) − ycos(φ) (green line), and their

intersection (red circle). (B) and (C) The values of the Kepler function in two different orientations. (D) The contour and gradient.

https://doi.org/10.1371/journal.pone.0203821.g002

Inverse LS Mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0203821 September 13, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0203821.g002
https://doi.org/10.1371/journal.pone.0203821


Definition 5. Stereographic projection.

i. Mapping SPF (stereographic projection forward)

x0 ¼
kxk2

� 1

kxk2
þ 1

ð81Þ

x1 ¼
2

kxk2
þ 1

 !

Re xð Þ ¼
2

kxk2
þ 1

 !

x1 ð82Þ

x2 ¼
2

kxk2
þ 1

 !

Im xð Þ ¼
2

kxk2
þ 1

 !

x2 ð83Þ

Z0 ¼ Reð�xyÞ ¼ x1y1 þ x2y2 ð84Þ

Fig 3. Calculations and orbits. (A) A typical orbit, with points closer where the planet is moving slower. (B) The six Delaunay variables, all of which, except for the

mean eccentricity, remain constant over the orbit. The user interface is shown in S1 Fig.

https://doi.org/10.1371/journal.pone.0203821.g003

Fig 4. Stereographic projection and Levi-Civita mapping. The stereographic projection (SPF forward and SPG inverse) and the Levi-Civita mapping (LCF

forward and LCG inverse).

https://doi.org/10.1371/journal.pone.0203821.g004
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Z1 ¼
kxk2

þ 1

2

� �

Re yð Þ � Re �xyð ÞRe xð Þ ¼
kxk2

þ 1

2

� �

y1 � x1y1 þ x2y2ð Þx1 ð85Þ

Z2 ¼
kxk2

þ 1

2

� �

Im yð Þ � Re �xyð ÞIm xð Þ ¼
kxk2

þ 1

2

� �

y2 � x1y1 þ x2y2ð Þx2 ð86Þ

ii. Mapping SPG (stereographic projection inverse)

kxk2
¼

1þ x0

1 � x0

ð87Þ

x ¼
x1 þ ix2

1 � x0

ð88Þ

x1 ¼
x1

1 � x0

ð89Þ

x2 ¼
x2

1 � x0

ð90Þ

y ¼ Z0ðx1 þ ix2Þ þ ð1 � x0ÞðZ1 þ iZ2Þ ð91Þ

y1 ¼ Z0x1 þ ð1 � x0ÞZ1 ð92Þ

y2 ¼ Z0x2 þ ð1 � x0ÞZ2 ð93Þ

The stereographic projection maps T�R2 to T�S2 and the inverse projection maps to T�S2

back to T�R2.

Definition 6. Levi-Civita mapping.

(ii) Mapping LCF (Levi-Civita forward)

x ¼
w
�z

ð94Þ

y ¼ 2z2 ð95Þ

(ii) Mapping LCG (Levi-Civita inverse)

w ¼ �
1
ffiffiffi
2
p x

ffiffiffi
y
p

ð96Þ
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z ¼ �
1
ffiffiffi
2
p

ffiffiffi
y
p

ð97Þ

The forward Levi-Civita mapping, in our notation, maps T�C2
to T�R2 and the inverse

Levi-Civita mapping, maps T�R2 to T�C2
.

Identities

Proposition 7. The following identities hold:

x
2
¼ x

2

0
þ x

2

1
þ x

2

2
¼ 1 ð98Þ

x � Z ¼ x0Z0 þ x1Z1 þ x2Z2 ¼ 0 ð99Þ

Z2 ¼ Z2

0
þ Z2

1
þ Z2

2
¼
kxk2

þ 1

2

� �2

kyk2
¼ ðkwk2

þ kzk2
Þ

2
ð100Þ

x1Z2 � x2Z1 ¼ x1y2 � x2y1 ¼ 2ðw1z2 � w2z1Þ ð101Þ

HK ¼ �
1

2Z2
¼

2

ðkxk2
þ 1Þ

2
kyk2

¼ �
1

2ðkwk2
þ kzk2

Þ
2

ð102Þ

HR ¼
kpk2

2
�

1

kqk
þ p1q2 � p2q1ð Þ

¼ �
1

2Z2
þ x1Z2 � x2Z1

¼
2

ðkxk2
þ 1Þ

2
kyk2

þ x1y2 � x2y1

¼ �
1

2ðkwk2
þ kzk2

Þ
2
þ 2 w1z2 � w2z1ð Þ ð103Þ

HC ¼
kpk2

2
�

m

kq � mk
�

1 � m

kq � ek
þ p1q2 � p2q1ð Þ ð104Þ

where e = (−μ,0),m = (1 − μ,0) represent the coordinates of the earth and moon, resulting in

HC ¼
kpk2

2
�

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq1 þ m � 1Þ
2
þ q2

2

q �
1 � m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq1 þ mÞ
2
þ q2

2

q þ p1q2 � p2q1ð Þ ð105Þ

Identity (101) is the angular momentum, (102) is the Kepler Hamiltonian, (103) is the Hamilto-

nian of the planar rotating Kepler problem [13]. In (104), for the (planar) circular restricted

3-body problem in a rotating frame, we use the Hamiltonian as defined in [30], except that the

sign of the angular momentum is reversed in order to match the planar rotating Kepler problem.

Inverse LS Mapping
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Proof. These are all direct results of the definitions and can be calculated in either direction,

i.e. solely based on the forward mapping or the inverse mapping (details in supporting infor-

mation). ■
Ultimately, we would like to examine HX = HC � Tμ � LSG � SPF � LCF, but we observe that,

when we calculate HC � Tμ � LSG, the expressions for sin(φ) and cos(φ) do not cancel out, leav-

ing us with an expression that we can only solve numerically. In addition, we have added a

small coordinate transformation, Tμ, that shifts q1 by a value of μ. This is necessary because the

LS mapping regularizes for the collision point, q = 0, but in the 3-body problem, we need to

regularize for the heavy primary, q = μ.

Now we want to find the curvature of the tangential component of the Hessian using the

method of [13]. If this curvature is always positive, we know that the energy hyperspace is con-

vex. Specifically, the following steps are involved:

For a fixed value of the energy c, we first find the points of energy hyperspace Sc = H−1(c).

This level set, or energy hyperspace, is 4-dimensional, and we consider its surface, which is a

3-dimensional hypersurface. Now we want to find the Gauss-Kronecker curvature tangential

to this hypersurface. Let G denote the gradient of the Hamiltonian, i.e.

G ¼ rH ð106Þ

then G is a 4-vector and we can think of it as a quaternion

G ¼ ðG1;G2i;G3j;G4kÞT ð107Þ

Since G is perpendicular to the energy hypersurface, the following 3 vectors form a basis for

the tangential component of G:

Gtan ¼ ðGi Gj GkÞ ¼

� G2 � G3 � G4

G1 � G4 G3

G4

� G3

G1

G2

� G2

G1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð108Þ

Now we can find the curvature:

CK ¼ detðGtan
T �HessðHÞ � GtanÞ ð109Þ

For the Kepler Hamiltonian, these expressions can be calculated in closed form.

Proposition 8. For the Kepler Hamiltonian,

i. The tangential curvature of the Hamiltonian is

CK ¼
512

ðkwk2
þ kzk2

Þ
24

ii. The tangential curvature is always positive.

iii. The bounded component of the energy hypersurface Sc = H−1(c) is convex.

Proof. (i) The Kepler Hamiltonian (102) is

HK ¼ �
1

2ðkwk2
þ kzk2

Þ
2

ð110Þ
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The gradient of the Hamiltonian is

GK ¼ rHK ¼
2

ðkwk2
þ kzk2

Þ
3

w1

w2

z1

z2

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð111Þ

The Hessian of the Hamiltonian is

HessðHKÞ ¼
2

ðkwk2
þ kzk2

Þ
3

1 0 0 0

0 1 0 0

0

0

0

0

1 0

0 1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

�
12

ðkwk2
þ kzk2

Þ
4

w2
1

w1w2 w1z1 w1z2

w1w2 w2
2

w2z1 w2z2

w1z1

w1z2

w2z1

w2z2

z2
1

z1z2

z1z2 z2
2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð112Þ

The tangential component of the gradient is

GKtan ¼
2

ðkwk2
þ kzk2

Þ
3

� w2 � z1 � z2

w1 � z2 z1

z2

� z1

w1

w2

� w2

w1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð113Þ

The curvature is

CK ¼ det GKtan
T �HessðHÞ � GKtanð Þ ¼

512

ðkwk2
þ kzk2

Þ
24

ð114Þ

(ii)-(iii) For the Kepler Hamiltonian, we can see that the curvature is positive for all values of

the energy, so the energy hyperspace H−1(c) is always convex. ■
For the planar rotating Kepler problem, these expressions can also be calculated in closed

form, but the expression for the curvature is quite long. We have included all details in the sup-

porting information. The paper on which we have modeled this calculation [13] calculates the

curvature of a mapping based on the Hamiltonian and a fixed value of c, whereas we calculate

the curvature of a mapping based directly on the Hamiltonian. The final result, which states

that the energy hyperspace H−1(c) is always convex, is the same, but the proof of positive curva-

ture is different, meaning that we have provided an alternate proof of the result.

Proposition 9. For the planar rotating Hamiltonian, and c = HR� −1.5,

i. The tangential curvature of the Hamiltonian is

CRt ¼
512

X24

� �

C1C2C3C4C5C6
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where

C1 ¼ X � 1

C2 ¼ X þ 1

C3 ¼ X2 þ X þ 1

C4 ¼ X2 � X þ 1

C5 ¼ � 6L2X4 þ LX8 � LX2 þ 7X6 � 1

C6 ¼ ðX
6 þ 2LX2 þ 1Þ

2

X ¼ w2

1
þ w2

2
þ z2

1
þ z2

2

L ¼ 2ðw1z2 � w2z1Þ

ii. The tangential curvature is always positive.

iii. The bounded component of the energy hypersurface Sc = H−1(c) is convex.

Proof. (i)-(ii) These are very long calculations, and the details are provided in the support-

ing information. (iii) is a direct result of (ii). In the proof, we make use of the assumptions

|q|� 1, which holds for the bounded component of the Hill region and is equivalent to HK�

−.5, and c = HR� −1.5. ■
For the circular restricted 3-body problem in a rotating frame, it is not possible to calculate

the curvature in closed form, because the Kepler function does not cancel out of the inverse LS
mapping. Numerical calculations show positive values of the curvature within certain

limitations.

Observation10. For the circular restricted 3-body Hamiltonian, and c� the energy of the
Lagrangian point L1, numerical calculations based on the inverse LS mapping provide evidence
that

i. The tangential curvature is positive with limitations stated in (iii).

ii. The bounded component of the energy hypersurface Sc = H−1(c) is convex with limitations
stated in (iii).

iii. If rdHP (relative distance to the heavy primary) is the distance of the secondary object to the
heavy primary divided by the distance of the Lagrangian point L1 to the heavy primary, then
(i) and (ii) are true in the following regions

a. for μ = 0 (planar rotating Kepler problem), 0� rdHP < 1.

b. for μ = 3.277 � 10−7(Sun-Mars), 0.005< rdHP < 1.

c. for μ = 3.003 � 10−6(Sun-Earth), 0.01< rdHP < 1.

d. for μ = 9.536 � 10−4(Sun-Jupiter), 0.11< rdHP < 1.

e. for μ = 1.216 � 10−2(Earth-Moon), 0.15< rdHP < 1.

Inverse LS Mapping
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f. for μ = 0.1, 0.3 < rdHP < 1 and c� −1.8.

g. for μ = 0.5, 0.3< rdHP < 1 and c� −2.0.

Details. The details consist of two sets of numerical calculations of the tangential curvature.

In one method, we create a grid of points in C2
and calculate the curvature for each one. The

validity of the method is limited by the fact that we can never know when we have calculated

enough points. We also record some other values (e.g. q) in hopes of seeing a pattern.

The other method consists of calculating a constrained minimum of the curvature, where

the constraints are “distance to the heavy primary is less than or equal to the distance of the

heavy primary to L1”, and “c is less than or equal to the energy of L1”. This provides a numeri-

cal proof that the curvature in the basin of attraction of the local minimum is always positive.

The validity of this method is limited by the fact that we can never know if we have found all

local minima, i.e. a global minimum.

The details of the calculations, showing some patterns that arise, are included in the sup-

porting information.

The loss of positive curvature for points close to the heavy primary is discussed in more

detail in the supporting information. It appears to arise from the fact that points close to the

heavy primary can have a wide range of energy values, leading to a higher probability of a

larger curvature. For increasing values of, this happens for increasing values of q, so it is not

simply an issue with getting too close to the singular point, where the software used to calculate

gradient and Hessian might become erratic.

Observation11. For the circular restricted 3-body Hamiltonian, and c� the energy of the
Lagrangian point L1, numerical calculations based on the inverse LS mapping provide evidence
that the Birkhoff conjecture is true.

Details. We follow the argumentation of Frauenfelder et al [13, 31]. In theorem 1.3, Hofer,

Wysocki, and Zehnder [32] used holomorphic curves to show the existence of a global surface

of section under the condition that the energy hypersurface is contact and dynamically convex,

i.e. the Conley-Zehnder indices of all periodic orbits are greater than or equal to three. More-

over, they showed that if the energy hypersurface admits a convex embedding it is dynamically

convex. Later, in Theorem A, Albers, Frauenfelder, van Koert, and Paternain [33] proved the

contact condition, so that only dynamical convexity remains to be checked. More details can

be found in [31]. As discussed in [13], numerical experiments of Otto van Koert, based on the

Levi-Civita embedding, show that nonconvex points arise close to the Lagrange points. In con-

trast with that, numerical evidence in Proposition 10 (above) shows that, for Sun-Mars, Sun-

Earth and Sun-Jupiter, the only nonconvex points are close to collisions. That there are non-

convex points close to collisions is due to the smoothness issue of the Ligon-Schaaf map at col-

lisions. This implies that the Conley-Zehnder indices of periodic orbits which do not come

close to the sun have Conley-Zehnder index greater than or equal to three. Combining both

embeddings and believing the numerical evidence then implies that the only periodic orbits

which could have Conley-Zehnder index less than three are periodic orbits which come close

to the sun as well as to the Lagrange point. Probably, such orbits have higher actions than the

retrograde periodic orbit and therefore do not obstruct the Birkhoff conjecture, telling us that

the retrograde periodic orbit bounds a global surface of section.

With this, the validity of the Birkhoff conjecture, i.e. the existence of a global surface of sec-

tion, can be used to study the dynamics of orbits, as discussed in [13]. Due to the work of

Franks, Handel and Le Calvez, we now have a much deeper understanding of the nature of

area-preserving disk maps [34, 35]. However, specific properties of the return map of the cir-

cular restricted 3-body problem are still open and these form in fact one of the ultimate goals

beyond the Birkhoff conjecture.
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S1 Data. This .zip file contains data created by the software in S1 Software.

(ZIP)
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